Multi-Sourced Electricity for Electrolytic Hydrogen

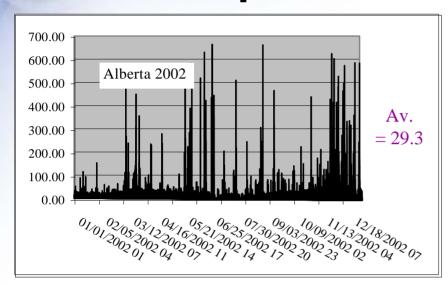
Alistair I. Miller Romney B. Duffey AECL

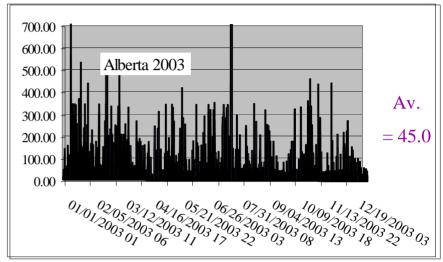
> Matthew Fairlie Fairfield Group

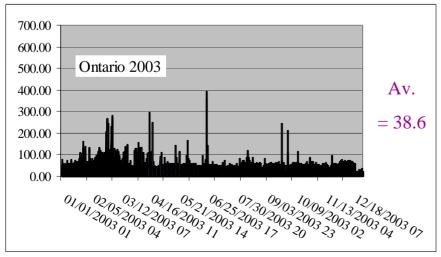
Philipp AndresVestas Americas

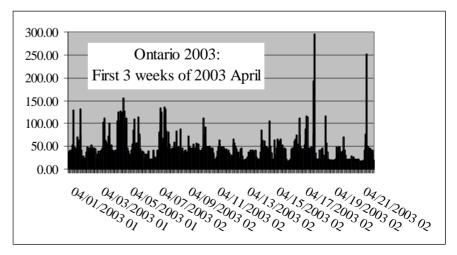
DOE Hydrogen Electrolysis-Utility Integration Workshop Boulder, Colorado 2004 September 22 & 23

Overview


- Economics of making H₂ from advanced nuclear by selling a mix of electricity and H₂
- Blending wind generation with nuclear
 - Accept extra current when available
 - Either to sell or convert to H₂
 - Avoids need for back-up generation
 - Simplified treatment with wind either on or off
 - For simplification, look at generation close to electricity source
- Encouraging results
 - Easily meets DOE's 2 \$/gge target (2000 \$/t H₂)




Non-Polluting Hydrogen for the Hydrogen Age


- ✓ Objective is non-polluting transport
 - Eliminate local pollution
 - Eliminate CO₂ emissions
- ✓ Source of H₂ production must be non-emitting
 - Nuclear and wind satisfy this requirement
- Electrolytic route is available and easy to deploy on all scales
 - Exploit fluctuation in electricity prices
 - √ H₂ must be affordable
 - Using USDOE target (at production site) of 2 \$/gge = 2000 \$/t H₂

Fluctuating Electricity Buying Prices in Open Markets (US\$/MW.h)

Page 4

Exploit the Variation to Sell H₂ and e⁻

- Electricity production costs must be low
 - 3 US¢/kW.h
 - Expected to be available from either wind or advanced nuclear
- Sell as electricity when grid price is high
- Make H₂ when the grid price is low
 - Needs enlarged electrolysis capacity to catch up
 - Needs H₂ storage
- Electricity used for electrolysis could sometimes be sold for more but:
 - More stable revenue stream with H₂ and e⁻ co-products
 - New off-peak capacity does not undermine the market price
 - Gives desired return on investment

Is AECL's ACR Electricity Cost Target Realistic?

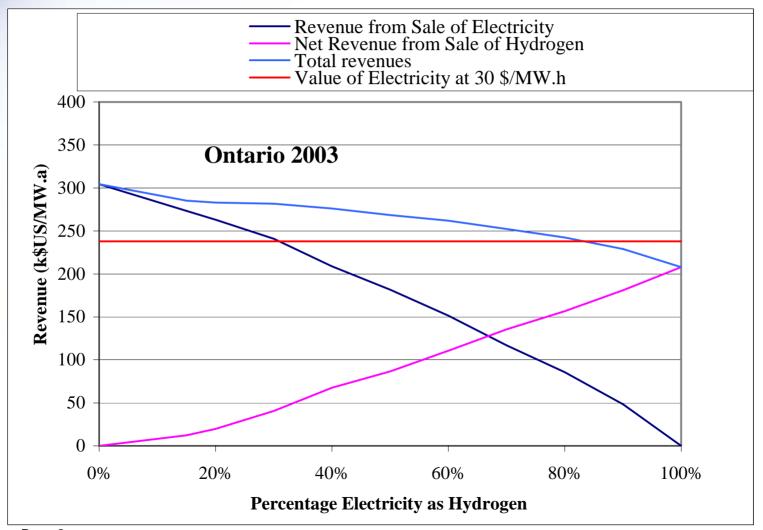
- The target for AECL's ACR™ is ~ 3 US¢/kW.h at generation
 - Based on Qinshan experience
 - Gain 5% on conversion efficiency (higher pressure/temperature)
 - Saving 7.5% on less D₂O;
 - 6% with smaller core size;
 - 11.5% on simplification, elimination, better materials;
 - 5% on BOP optimization; and
 - 10% with modularization, construction advances, engineering tools

Turning e⁻ into H₂

- Prices in open electricity markets are very variable
 - Not just by the hour and the day but from year to year
- With 3 US¢/kW.h electricity, could a reactor owner smooth the market by selling a blend of electricity (at times of peak demand and price) and hydrogen at other times and make a good profit?
- Set a H₂ production rate (as a proportion of all-H₂ production)
 - Apply to actual hourly electricity price data and minimize cost of H₂ production while maintaining constant H₂ supply by optimizing:
 - The size of the electrolysis installation
 - The size of storage
 - Rules on when to switch on electrolysis

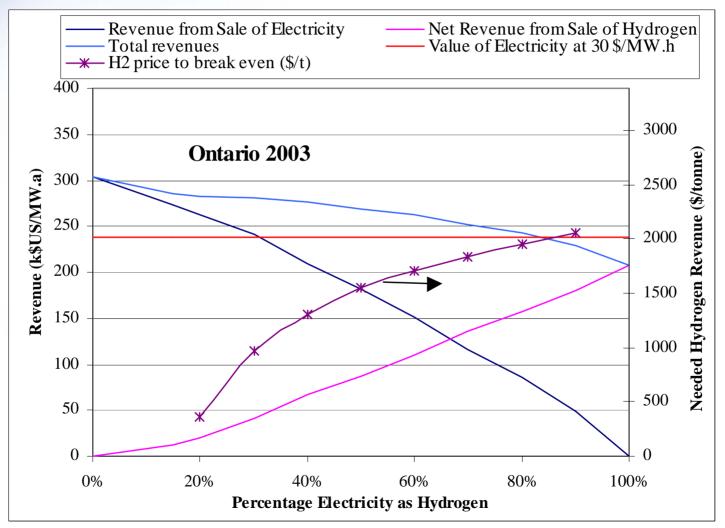
Page 7

- Value H₂ at 2000 US\$/tonne (the DOE's centralized plant



Electrolytic Hydrogen

- Focus on low-cost electrolysis
 - 300 US\$/kW
 - Accept some premium on electricity use (total equivalent to 2 volts or 53.6 kW.h/kg H₂)
- Storage
 - Use 400 000 US\$/tonne H₂ for tube-trailers
 - Store at least 12-hours of average demand
- Optimize
 - Cheaper power
 - = Less time on-line
 - = More electrolysis cells
 - = More storage


Making H₂ Electrolytically in Ontario

Page 9

Making H₂ Electrolytically in Ontario

Details of an Example

- e.g. In Ontario in 2003 with 50% sales as electricity; 50% H₂
 - 126 (storage) + 670 (electrolysis) + 720 (electricity) = 1516 \$/t H₂
 - Achieves 3 US¢/kW.h but apparently forgoes 920 \$/t H₂ on electricity value
 - Converting electricity below 3.68 US¢/kW.h
 - If storage more than half-empty, converting electricity up to 14.9US¢/kW.h
 - Storage of 12.5 h of average production
 - Electrolysis installation is 85.6% of 100% dedicated size
- ✓ Does meet the 2000 \$/t H₂ target

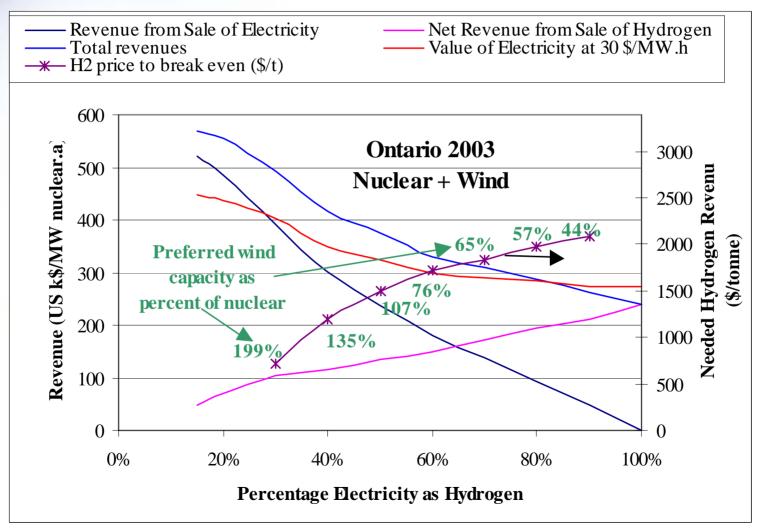
Now Add Wind

Assumptions:

- Advanced nuclear with 90% capacity factor, 3 US¢/kW.h
 - Actuals:
 US average for 2002 = 91%, 2003 = 89%, 2003 CANDU-6s = 88%
- Wind with 35% average capacity factor, 3 US¢/kW.h
- Electrolysis installation including energy for gas compression
- Basic 55.3 kW.h/kg H₂
- Electricity use varies as (41.66 + 7.955 A) + (4.545/A) + 1.11
 kW.h/kg H₂
 - Where A is current relative to reference mA/cm²

Allow wind to be added to extent preferred by the optimizer

- Results are per MW of nuclear augmented by whatever the optimizer likes for additional capacity in the form of 35%-available wind, distributed in a pseudo-random way as 12-hour blocks
- Wind and nuclear production costs for e⁻ are assumed equal at 3 US¢/kW.h
- Power from both sources is dispatched to the grid whenever the price is high (according to the optimized thresholds)
- Wind takes advantage of the excess capacity needed in any case to rebuild inventory after production interruptions
- Wind also feeds up to 36% extra current to the cell (which has been designed to accept this, though at 10% greater capital cost than normal)



Typical Result

- ✓ Pure nuclear case in Ontario in 2003 with 50% sales as electricity, 50% H₂
 - 90% capacity factor
- 126 (storage) + 670 (electrolysis) + 720 (electricity) = 1516 \$/t
- × Pure wind, same scenario
 - 35% capacity factor
- 324 (storage) + 1723 (electrolysis) + 720 (electricity) = 2767 \$/t
 - Too expensive, though calculation neglects small benefit of lower average current density
- ✓ Blend nuclear and wind
 - Take advantage of spare cell capacity (accommodating intermittency)
 - Design electrolysis to allow wind to drive up current density by as

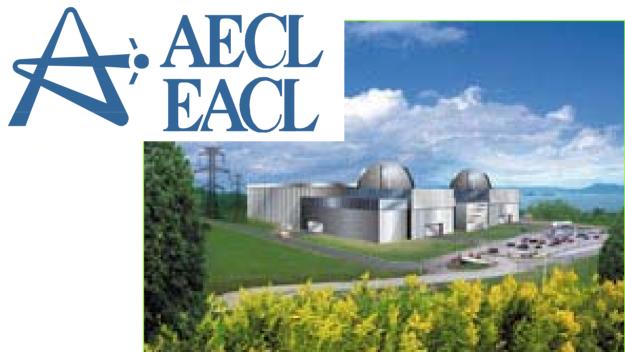
Nuclear and Wind Combination

Nuclear + Wind Blend

- Economics are comparable to nuclear alone
 - 131 (storage) + 481 (electrolysis) + 891 (electricity) = 1502 \$/t
 - Compared to pure nuclear's:
 - 126 (storage) + 670 (electrolysis) + 720 (electricity) = 1516 \$/t
- There is no external cost associated with back-up for the wind generation
- Substantial contribution from wind
 - Production of H₂ is 32% higher
- Cost is comparable to a large SMR with 5 \$/GJ natural gas
 - About 1500 \$/tonne H₂ on this scale, including estimated cost for CO₂ separation and sequestration, where sequestration is practicable

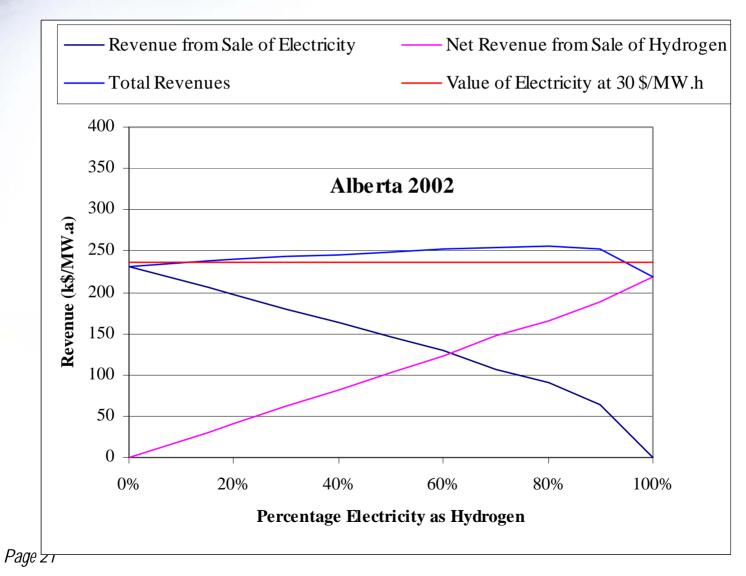
Conclusions

- Slightly more revenue would usually accrue to 100% sale of electricity (Alberta in 2002 would have been an exception)
 - But this assumes that extra supply at times of lower demand does not glut the market and depress prices
 - Hence H₂ is a very attractive co-product for a blend of nuclear and wind electricity generation
 - Both technologies where operating costs are very low and baseloading highly desirable
- Electricity can be profitably produced at 3 US¢/kW.h for mixed sales of electricity and H₂ sales at prices matching the SMR cost

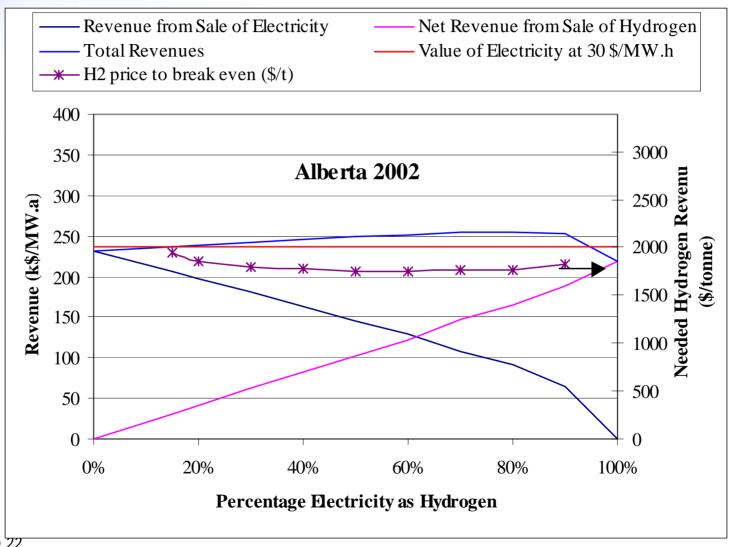


What next?

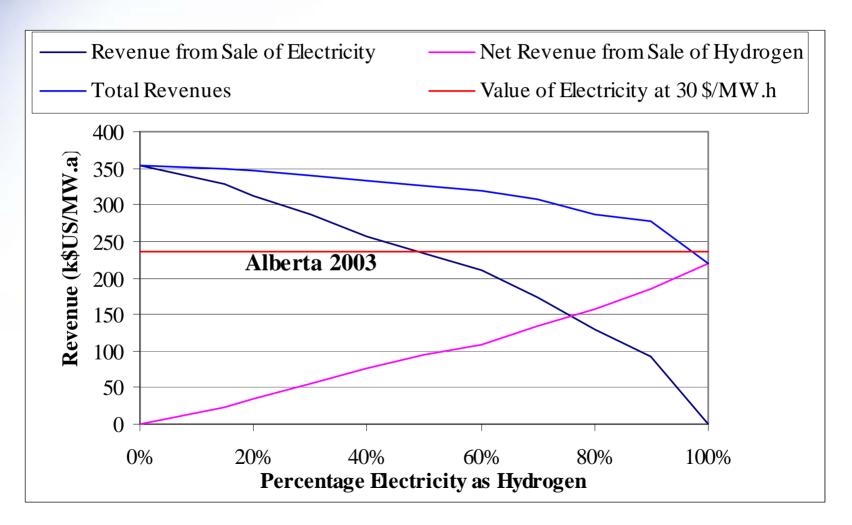
- More sophisticated optimization of variable current cells
- To realize the full advantage of electrolytic H₂, need to utilize its capacity for distributed, modularized production
- Mark-up for electricity distribution is crucial
 - Requires an unconventional attitude to charges for distribution
 - Practically, making H₂ when electricity demand is off-peak should not require grid expansion
 - In line with Ontario's drive toward time-of-day pricing to have time-of-day distribution costs
 - Apply data more representative of real wind generation

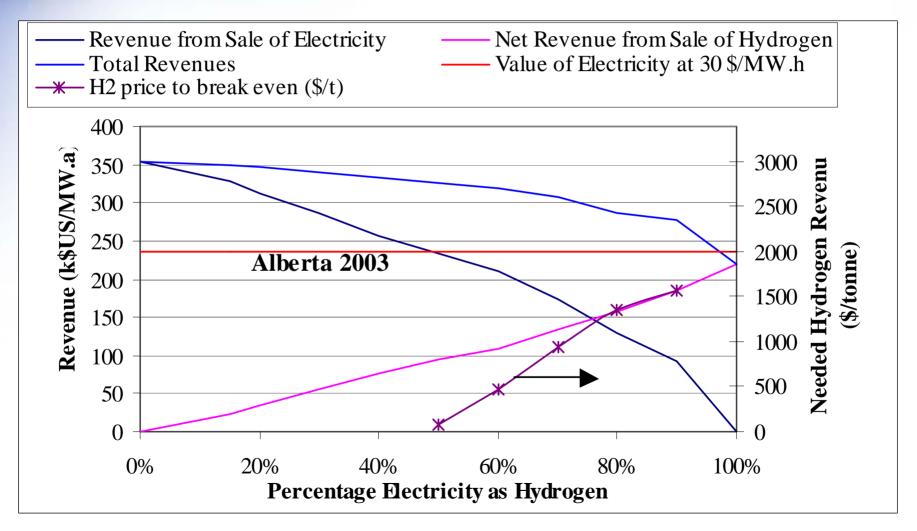

Detail of Spreadsheet Calculation

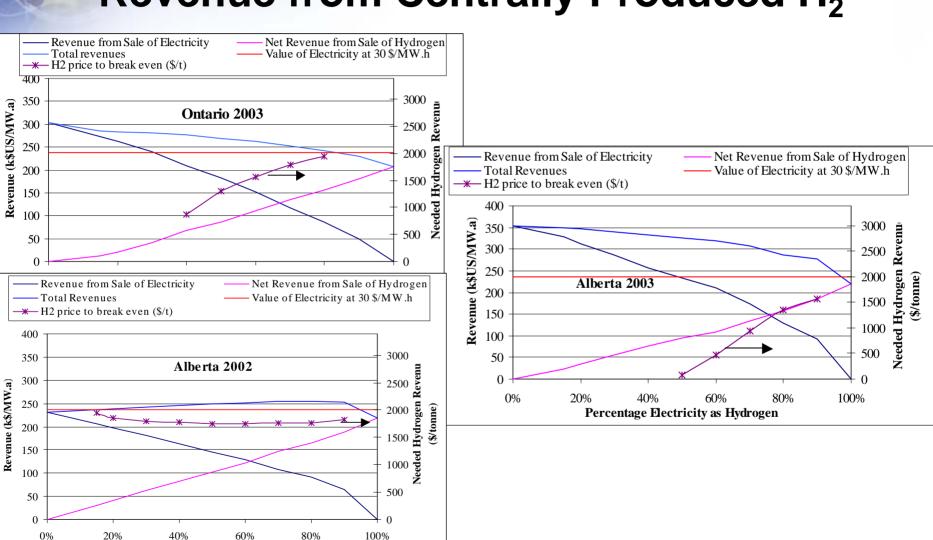
Date (HE)	Price (\$)	System Demand (MW)	Storage	On- Off Flag	Value of electricity used	Sold to	Value elect.	No	Fill for	Current	avail.	< Chosen
04/40/0000	40.0	,	(11)			Grid	sold	H2	electrol.		?	RAND()
01/10/2003 03	18.8	6685	8.24	0	13.33	0.29	5.5	0	0.714	0.708	0	0.223
01/10/2003 04	18.9	6683	8.26	0	13.38	0.29	5.5	0	0.714	0.708	0	0.223
01/10/2003 05	18.7	6758	8.29	0	13.22	0.29	5.5	0	0.714	0.708	0	0.223
01/10/2003 06	19.2	6828	8.32	0	13.61	0.29	5.6	0	0.714	0.708	0	0.223
01/10/2003 07	49.0	7192	7.63	1	0.00	1.00	49.0	0	0.000	0.000	0	0.223
01/10/2003 08	62.6	7706	6.94	1	0.00	1.00	62.6	0	0.000	0.000	0	0.223
01/10/2003 09	56.7	7965	6.97	0	40.14	0.29	16.6	0	0.714	0.708	0	0.223
01/10/2003 10	57.7	7912	7.00	0	40.84	0.29	16.8	0	0.714	0.708	0	0.223
01/10/2003 11	58.0	7944	7.02	0	41.09	0.29	16.9	0	0.714	0.708	0	0.223
01/10/2003 12	57.4	7883	7.05	0	40.64	0.29	16.8	0	0.714	0.708	0	0.223
01/10/2003 13	55.4	7862	7.73	0	77.84	0.67	36.9	0	1.363	1.404	1	0.676
01/10/2003 14	40.1	7855	7.04	1	0.00	2.07	82.9	0	0.000	0.000	1	0.676
01/10/2003 15	56.2	7825	7.71	0	78.88	0.67	37.4	0	1.363	1.404	1	0.676
01/10/2003 16	55.9	7695	7.03	1	0.00	2.07	115.6	0	0.000	0.000	1	0.676
01/10/2003 17	34.3	7746	7.70	0	48.19	0.67	22.8	0	1.363	1.404	1	0.676
01/10/2003 18	57.1	8019	7.02	1	0.00	2.07	118.1	0	0.000	0.000	1	0.676


37.5

12.9







Revenue from Centrally Produced H₂

Percentage Electricity as Hydrogen